温州大学化学与材料工程学院

网站首页 考博网 温州大学 ENGLISH 考研网

科学研究

祝贺钱金杰老师指导研究生王贤在Cryst. Growth Des.上发表学术论文

发布时间:2019-04-02    来源:化学与材料工程学院    作者:    点击次    [点击关闭]

标题(中文):稳定的笼基锌基金属有机框架衍生的双掺杂碳材料用于超级电容器

标题(英文):Robust Cage-Based ZincOrganic Frameworks Derived Dual-Doped Carbon Materials for Supercapacitor

刊物名称及期号、页码:: Cryst. Growth Des. 2018, 18, 23582364

作者姓名(中文):钱金杰,王贤,柴路路,梁林峰,黎挺挺,胡悦,黄少铭

作者姓名(英文):Jinjie Qian, Xian Wang, Lulu Chai, Lin-Feng Liang, Ting-Ting Li, Yue Hu, and Shaoming Huang

摘要(英文):Electrochemical double layer capacitors can store electrical energy by accumulating electrolyte ions on the electrode surface and are playing an important role in renewable energy sources due to their high power density and superior durability. Owing to the excellent electrical, mechanical, and thermal characteristics, three-dimensional multiporous carbon nanomaterials are catching considerable attention which could lead to the high-rate supercapacitor performance. Here, we present a stable 1.7 nm cage-based metalorganic framework (BMM-9, [Zn2(TPO)4/3(dabco)· Solvent]) with high porosity of 62.4%. On the other hand, after the thermal treatment at high temperature, the three-dimensional MOF-derived micro/mesoporous carbon material BMM-9-900 acts as dual-doped active electrode materials and shows a capacitance of 182.8 F g1 at a current density of 1 A g1, and a capacity retention of 98.5% over 1000 cycles. Given the wellestablished structural tunability, these outcomes will shed light on a new generation of MOF-derived supercapacitors whose active materials can be tunable at the molecular level.

研究现状(中文):能源储存问题是二十一世纪的重大挑战之一。由于现代社会的迫切需求,开发高性能储能装置对于满足生活中各种应用中高能量密度和超强功率输出的需求非常重要。超级电容器(SCs)也被称为电化学电容器(ECs)由于其功率密度高,充放电速率快,环保,循环寿命长等特点,能够填补传统低能量密度电容器和低功率密度锂离子电池之间的空白,一直被认为是最适合的能源体系,被认为是下一代电子和电动车最有前途的储能装置之一。超级电容器的电化学性能主要取决于电极。金属有机框架化合物MOFs是用有机和无机组分构成的,它们一直被用作合成多孔碳和金属/金属氧化物纳米材料的原料。经过热转化,其产物能够保持一定的形貌,并同样具有高比表面积和多孔性,这使得它们成为超级电容器电极材料的良好候选。

创新点(中文):

  1. 我们合成了一例新的稳定的笼基锌基MOF,具有超高BET比表面积约2200cm2/g;

2.BMM-9在惰性气体保护下高温煅烧,金属Zn挥发打孔的作用,增大了材料的比表面积;

3. 纳米焦磷酸锌粒子表面对电荷的可逆吸附导致了更高的电容性能。

原文链接:

https://doi.org/ 10.1021/acs.cgd.7b01765